Gọi \(n=\left(a,c\right)\) \(\Rightarrow\left\{{}\begin{matrix}a=na_1\\c=nc_1\end{matrix}\right.\)
+ \(ab=cd\Rightarrow na_1b=nc_1d\)
\(\Rightarrow a_1b=c_1d\) (1)
\(\Rightarrow b⋮c_1\Rightarrow b=mc_1\)
Thay \(b=mc_1\) vào (1) ta có :
\(a_1mc_1=c_1d\Rightarrow d=ma_1\)
Do đó : \(a^{2018}+b^{2018}+c^{2018}+d^{2018}\)
\(=\left(na_1\right)^{2018}+\left(mc_1\right)^{2018}+\left(nc_1\right)^{2018}+\left(ma_1\right)^{2018}\)
\(=a_1^{2018}\left(m^{2018}+n^{2018}\right)+c_1^{2018}\left(m^{2018}+n^{2018}\right)\)
\(=\left(a_1^{2018}+c_1^{2018}\right)\left(m^{2018}+n^{2018}\right)\)
=> đpcm