Cho a,b,c nguyên dương thỏa mãn a^2+ab+b^2=c^2+cd+d^2 CMR a+b+c+d là hợp số
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
Bài 1:
a) Cho a, b, c, d , là các số nguyên thỏa mãn a - b = c + d. Chứng minh rằng a2 + b2 + c2 + d2 luôn là tổng của ba số chính phương
b) Cho a, b, c, d là các số nguyên thỏa mãn a + b + c + d = 0. Chứng minh rằng ( ab - cd )( bc - da )( ca - db ) là số chính phương
CHO abcd=1. Tính:
A=\(\dfrac{a}{abc+ab+a+1}+\dfrac{b}{bcd+bc+b+1}+\dfrac{c}{cda+cd+c+1}+\dfrac{d}{dab+da+d+1}\)
Cho cac so duong abcd a+b+c+d =4.cm1/ab+1/cd+1/bc+1/da lon hon hoac bang a2+b2+c2+d2
cho các số nguyên dương a>b>c>d thỏa mãn \(a^2+ac-c^2=b^2+bd-d^2\). Cmr: ab+cd là hợp số
Cho a;b;c là các số thực dương thỏa mãn: a+b+c=3.
Tìm Max của: \(A=\dfrac{1}{a+3}+\dfrac{1}{b+3}+\dfrac{1}{c+3}-\dfrac{1}{3\left(ab+bc+ac\right)}\)
Nhờ các bạn Giúp mk với ạ Mk xin cảm ơn
Cho a,b,c,d>0 thoả mãn: ab=cd=1. CMR: (a+b)(c+d)+4\(\ge\) 2(a+b+c+d)
Cho 3 số a, b, c thỏa mãn: abc=1 và \(a^3>36\). CMR: \(\dfrac{a^2}{3}+b^2+c^2>ab+bc+ca\)