Đặt \(\dfrac{x}{a}\) = \(\dfrac{y}{b}\) = \(\dfrac{z}{c}\) = k \(\Rightarrow\)x=ak;y=bk ; z=ck.
(x+y+z)2=(ak+bk+ ck)2=[k(a+b+c)]2=
k2(a+b+c)2=k2(vì a+b+c=1nên(a+b+c)2=1)(1)
x2+y2+z2=(ka)2+(kb)2+(kc)2=k2a2+k2b2+k2b2
=k2(a2+b2+c2)=k2 (vì a2+b2+c2=1) (2)
Từ (1) và (2), \(\Rightarrow\) (x+y+z)2=x2+y2+z2=k2
\(\text{Đ}\text{ặ}t:\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\Rightarrow\left\{{}\begin{matrix}x=ak\\y=bk\\z=ck\end{matrix}\right.\)
Ta có:
\(\left(x+y+z\right)^2=\left(ak+bk+ck\right)^2=\text{[}k\left(a+b+c\right)\text{]}^2=k^2\left(1\right)\)
\(x^2+y^2+z^2=\left(ak\right)^2+\left(bk\right)^2+\left(ck\right)^2=a^2k^2+b^2k^2+c^2k^2=\left(a^2+b^2+c^2\right)k^2=k^2\left(2\right)\)
Từ (1) và (2) ta có đpcm