Violympic toán 7

Cho các số a , b , c , d khác 0 thỏa mãn \(\frac{a}{5b}=\frac{b}{5c}=\frac{c}{5d}=\frac{d}{5a}\) và a +b +c +d \(\ne\)0

Tính giá trị biểu thức S = \(\frac{a^{1000}}{d^{1009}}.\frac{b^{1019}}{c^{1010}}\)

VT
2 tháng 1 2020 lúc 10:53

Ta có: \(\frac{a}{5b}=\frac{b}{5c}=\frac{c}{5d}=\frac{d}{5a}.\)

\(\Rightarrow\frac{1}{5}.\frac{a}{b}=\frac{1}{5}.\frac{b}{c}=\frac{1}{5}.\frac{c}{d}=\frac{1}{5}.\frac{d}{a}\)

\(\Rightarrow\frac{1}{5}.\frac{a}{b}.5=\frac{1}{5}.\frac{b}{c}.5=\frac{1}{5}.\frac{c}{d}.5=\frac{1}{5}.\frac{d}{a}.5\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)\(a+b+c+d\ne0.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=\frac{1}{1}=1.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{d}=1\\\frac{d}{a}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d.\)

Lại có: \(S=\frac{a^{1000}}{d^{1009}}.\frac{b^{1019}}{c^{1010}}\)

\(\Rightarrow S=\frac{a^{1000}}{a^{1009}}.\frac{a^{1019}}{a^{1010}}\)

\(\Rightarrow S=\frac{a^{1000}.a^{1019}}{a^{1009}.a^{1010}}\)

\(\Rightarrow S=\frac{a^{2019}}{a^{2019}}\)

\(\Rightarrow S=a^0\)

\(\Rightarrow S=1.\)

Vậy giá trị của biểu thức \(S=1.\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
DH
2 tháng 1 2020 lúc 11:00

Cách này ngắn hơn nè ~~~~

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{5b}=\frac{b}{5c}=\frac{c}{5d}=\frac{d}{5a}=\frac{a+b+c+d}{5\left(a+b+c+d\right)}=\frac{1}{5}\)

\(\Rightarrow a=b=c=d\)

Khi đó: \(S=\frac{a^{1000}}{d^{1009}}.\frac{b^{1019}}{c^{1010}}=\frac{a^{1000}.a^{1019}}{a^{1009}.a^{1010}}=\frac{a^{2019}}{a^{2019}}=1\)

Vậy ...............................

~~~~~~~~~~ Trân trọng ~~~~~~~~

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
KD
Xem chi tiết
CG
Xem chi tiết
SB
Xem chi tiết
AC
Xem chi tiết
LN
Xem chi tiết
QN
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết