Luyện tập chung trang 91

QL

Cho các điểm A, B, C, D, E, F như Hình 9.29. Biết rằng DE // AB, EF // BC, DE=4cm, AB=6cm. Chứng minh rằng ΔAEF ∽ ΔECD và tính tỉ số đồng dạng

HM
10 tháng 9 2023 lúc 1:18

- Có EF // BC =>  \(\widehat {{\rm{AEF}}} = \widehat {AC{\rm{D}}}\) (2 góc đồng vị) (1)

- Có EF // BD (vì EF // BC) 

      DE // FB (vì MN // BC)

=> EFBD là hình bình hành

=> \(\widehat {EFB} = \widehat {E{\rm{D}}B}\)

mà \(\widehat {EFB} + \widehat {{\rm{AEF}}} = {180^o}\)

     \(\widehat {E{\rm{D}}B} + \widehat {E{\rm{D}}C} = {180^o}\)

=> \(\widehat {AF{\rm{E}}} = \widehat {E{\rm{D}}C}\) (2)

Từ (1) và (2) => ΔAEF ∽ ΔECD (g.g)

Có \(\frac{{AF}}{{E{\rm{D}}}} = \frac{2}{4} = \frac{1}{2}\)

=> Đồng dạng với tỉ số \(\frac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết