Rút gọn P:
\(P=\dfrac{4x}{\sqrt{x}-3}\)
\(\Rightarrow m\left(\sqrt{x}-3\right)P>x+1\)
\(\Leftrightarrow4mx>x+1\)
\(\Leftrightarrow\left(4m-1\right)x>1\)(1)
Xét \(4m-1=0\)
\(\Leftrightarrow m=\dfrac{1}{4}\)(loại vì (1) sai)
\(\Leftrightarrow x>\dfrac{1}{4m-1}\)
Xét \(\dfrac{1}{4m-1}< 0\)
\(\Rightarrow\left\{{}\begin{matrix}x< 0\\x>9\end{matrix}\right.\)(loại)
Xét \(\Leftrightarrow\dfrac{1}{4m-1}>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m-1>0\\\dfrac{1}{4m-1}\le9\end{matrix}\right.\)
\(\Leftrightarrow m\ge\dfrac{5}{18}\)
ta có : \(P=\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(P=\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{1-\sqrt{x}}{\sqrt{x}\left(2-\sqrt{x}\right)}-\dfrac{2}{\sqrt{x}}\right)\)
\(P=\left(\dfrac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{1-\sqrt{x}-2\left(2-\sqrt{x}\right)}{\sqrt{x}\left(2-\sqrt{x}\right)}\right)\)
\(P=\left(\dfrac{8\sqrt{x}-4x+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{1-\sqrt{x}-4+2\sqrt{x}}{\sqrt{x}\left(2-\sqrt{x}\right)}\right)\) \(P=\left(\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\right)\) \(P=\left(\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right).\left(\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\right)\)\(P=\dfrac{4\sqrt{x}\left(2+\sqrt{x}\right)\sqrt{x}}{\left(2+\sqrt{x}\right)\left(\sqrt{x}-3\right)}=\dfrac{4x}{\sqrt{x}-3}\)
\(\Rightarrow m\left(\sqrt{x}-3\right)P>x+1\Leftrightarrow4mx>x+1\Leftrightarrow\left(4m-1\right)x>1\) (1)
th1: \(m=\dfrac{1}{4}\) \(\Rightarrow\) loại vì (1) vô nghĩa
th2: \(m>\dfrac{1}{4}\) \(\Rightarrow x>\dfrac{1}{4m-1}\) vì \(x>9\)
\(\Rightarrow\) để \(x>9\) là điều chắc chắn thì \(\dfrac{1}{4m-1}\ge9\Leftrightarrow1\ge36m-9\Leftrightarrow m\le\dfrac{5}{18}\)
\(\Rightarrow\dfrac{1}{4}< m\le\dfrac{5}{18}\)
th3: \(m< \dfrac{1}{4}\) \(\Rightarrow x< \dfrac{1}{4m-1}\) mà \(x>9\) \(\Rightarrow\dfrac{1}{4m-1}>9\) \(\Leftrightarrow\) \(m< \dfrac{5}{18}\)
\(\Rightarrow m< \dfrac{1}{4}\)
vậy \(\dfrac{1}{4}< m\le\dfrac{5}{18}\) hoặc \(m< \dfrac{1}{4}\)