Chương I - Căn bậc hai. Căn bậc ba

NT

cho biểu thức M=\(\dfrac{2}{\sqrt{x}-1}+\dfrac{2\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}+\dfrac{x-10\sqrt{x}+3}{\sqrt{x^3}-1}\)

a) Với giá trị nào của x thì biểu thức có nghĩa

b) Rút gọn

c) Tìm x để biểu thức có GTLN

TQ
28 tháng 4 2019 lúc 15:47

a) Để biểu thức M có nghĩa thì \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b) \(M=\frac{2}{\sqrt{x}-1}+\frac{2\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}+\frac{x-10\sqrt{x}+3}{\sqrt{x^3}-1}=\frac{2\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{x-10\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{2x+2\sqrt{x}+2+2x-2+x-10\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{5x-8\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(5\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{5\sqrt{x}-3}{x+\sqrt{x}+1}\)c) Ta có \(M=\frac{5\sqrt{x}-3}{x+\sqrt{x}+1}\Leftrightarrow Mx+M\sqrt{x}+M-5\sqrt{x}+3=0\Leftrightarrow Mx+\left(M-5\right)\sqrt{x}+\left(M+3\right)=0\)Để phương trình có nghiệm( hay có giá trị x) thì \(\left(M-5\right)^2-4.M.\left(M+3\right)\ge0\Leftrightarrow M^2-10M+25-4M^2-12M\ge0\Leftrightarrow3M^2+22M-25\le0\Leftrightarrow\left(M-1\right)\left(3M+25\right)\le0\Leftrightarrow\)\(-\frac{25}{3}\le M\le1\)

Vậy M có GTLN khi \(\frac{5\sqrt{x}-3}{x+\sqrt{x}+1}=1\Leftrightarrow x+\sqrt{x}+1=5\sqrt{x}-3\Leftrightarrow x-4\sqrt{x}+4=0\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\Leftrightarrow\sqrt{x}-2=0\Leftrightarrow x=4\)

Vậy để biểu thức M có GTLN là 1 thì x=4

Bình luận (0)

Các câu hỏi tương tự
LL
Xem chi tiết
VP
Xem chi tiết
LG
Xem chi tiết
HL
Xem chi tiết
NK
Xem chi tiết
PL
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết