Violympic toán 8

TH

Cho biểu thức C = \(\left(\frac{2x+1}{x-1}+\frac{8}{x^2-1}-\frac{x-1}{x+1}\right).\frac{x^2-1}{5}\)

a) Tìm đkxđ của C

b) Rút gọn C

c) Chứng tỏ B > 0

NH
31 tháng 12 2019 lúc 11:08

a/ ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

Vậy..

b/ Ta có :

\(C=\left(\frac{2x+1}{x-1}+\frac{8}{x^2-1}-\frac{x-1}{x+1}\right).\frac{x^2-1}{5}\)

\(=\left(\frac{2x+1}{x-1}+\frac{8}{\left(x-1\right)\left(x+1\right)}-\frac{x-1}{x+1}\right).\frac{\left(x-1\right)\left(x+1\right)}{5}\)

\(=\left(\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{8}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right).\frac{\left(x-1\right)\left(x+1\right)}{5}\)

\(=\frac{2x^2+2x+x+1+8-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{5}\)

\(=\frac{x^2+5x+8}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{5}\)

\(=\frac{\left(x+\frac{5}{2}\right)^2+\frac{7}{4}}{5}\)

Vậy...

c/ Với mọi x ta có :

\(\left\{{}\begin{matrix}\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\\5>0\end{matrix}\right.\)

\(\Leftrightarrow\frac{\left(x+\frac{5}{2}\right)^2+\frac{7}{4}}{5}>0\)

\(\Leftrightarrow C>0\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
VC
Xem chi tiết
TQ
Xem chi tiết
TQ
Xem chi tiết
LK
Xem chi tiết
TQ
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết