Chương I - Căn bậc hai. Căn bậc ba

TO

Cho biểu thức : A= \(\dfrac{6}{x+2\sqrt{x}};B=\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\)

a) Tính A với x = \(\dfrac{1}{4}\) và rút gọn B

b) Đặt M = \(\dfrac{A}{B}\) Tìm các giá trị của x để M>1

c) Tìm x ϵ Z để M ϵ Z

TN
30 tháng 11 2018 lúc 20:02

ĐK: x>0,x\(\ne4\)

a) Ta thay x=\(\dfrac{1}{4}\) vào \(A=\dfrac{6}{x+2\sqrt{x}}=\dfrac{6}{\dfrac{1}{4}+2\sqrt{\dfrac{1}{4}}}=\dfrac{6}{\dfrac{1}{4}+2.\dfrac{1}{2}}=\dfrac{6}{\dfrac{1}{4}+1}=6:\left(\dfrac{1}{4}+1\right)=6:\dfrac{5}{4}=6.\dfrac{4}{5}=\dfrac{24}{5}=4,8\)B=\(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}=\dfrac{\sqrt{x}}{x-4}-\dfrac{2}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}=\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{6}{\left(2-\sqrt{x}\right)\left(\sqrt{x}+2\right)}=\dfrac{6}{4-x}\)

b) Ta có M=\(\dfrac{A}{B}=A\div B=\dfrac{6}{x+2\sqrt{x}}\div\dfrac{6}{4-x}=\dfrac{6}{x+2\sqrt{x}}.\dfrac{4-x}{6}=\dfrac{4-x}{x+2\sqrt{x}}=\dfrac{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{2-\sqrt{x}}{\sqrt{x}}\)

Ta lại có M>1\(\Leftrightarrow\dfrac{2-\sqrt{x}}{\sqrt{x}}>1\Leftrightarrow2-\sqrt{x}>\sqrt{x}\Leftrightarrow2>2\sqrt{x}\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)

Kết hợp với ĐK

Vậy 0<x<1 thì M>1

c) Ta có M\(=\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{2}{\sqrt{x}}-1\)

Vậy để \(M\in Z\) thì \(\sqrt{x}\inƯ\left(2\right)\in\left\{\pm1;\pm2\right\}\)

\(\sqrt{x}>0\)

Nên \(\sqrt{x}\in\left\{1;2\right\}\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\left(tm\right)\\x=4\left(ktm\right)\end{matrix}\right.\)

Vậy x=1 thì M\(\in Z\)

Bình luận (0)
TO
30 tháng 11 2018 lúc 19:39

Nguyễn Việt LâmTrầNguyễn Thị Khánh Như Trương NgọcThảo Vyn Trung NguyênBonkingsaint suppapong udomkaewkanjanaPhạm TiếnKHUÊ VŨMysterious PersonThiên Hàn

Bình luận (0)

Các câu hỏi tương tự
HL
Xem chi tiết
H24
Xem chi tiết
LG
Xem chi tiết
LG
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
PL
Xem chi tiết
H24
Xem chi tiết
PL
Xem chi tiết