Đại số lớp 8

TV

Cho biết tam giác có các cạnh a,b,c thì diện tích S của nó được tính bởi công thức : \(S=\frac{1}{4}\sqrt{\left(a^2+b^2+c^2\right)^2-2\left(a^4+b^4+c^4\right)}\).Tính diện tích tam giác khi :

a ) \(a=b=c\) b ) \(a^2=b^2+c^2\)

 

VT
5 tháng 11 2016 lúc 8:29

a ) Khi \(a=b=c\)

\(\Rightarrow S=\frac{1}{4}\sqrt{\left(3a^2\right)^2-6a^4}=\frac{1}{4}\sqrt{3a^4}\)

\(\Rightarrow S=\frac{a^2\sqrt{3}}{4}\)

Vậy diện tích tam giác đều cạnh a là \(S=\frac{a^2\sqrt{3}}{4}.\)

b ) Khi \(a^2=b^2+c^2\)

\(\Rightarrow S=\frac{1}{4}\sqrt{\left(2a^2\right)^2-2\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow S=\frac{1}{4}\sqrt{2\left(a^4-b^4-c^4\right)}\)

Từ \(b^2+c^2=a^2\)

\(\Rightarrow b^4+c^4+2b^2c^2=a^4,\)ta tính ra :

\(S=\frac{1}{4}\sqrt{4b^2c^2}\) \(\Rightarrow S=\frac{2}{4}b.c\) \(\Rightarrow S=\frac{1}{2}bc\)

Vậy diện tích tam giác vuông thì bằng \(\frac{1}{2}\) tích 2 cạnh góc vuông .

 

Bình luận (0)

Các câu hỏi tương tự
TA
Xem chi tiết
VQ
Xem chi tiết
PL
Xem chi tiết
TL
Xem chi tiết
CG
Xem chi tiết
PL
Xem chi tiết
VQ
Xem chi tiết
PS
Xem chi tiết
MD
Xem chi tiết