Bài 2: Giới hạn của hàm số

H24

Cho biết \(\lim\limits_{x\rightarrow0}\dfrac{sinax}{ax}=1\left(a\ne0\right)\). Tìm \(\lim\limits_{x\rightarrow0}\dfrac{1-cos2017x}{x^2}\)

HH
7 tháng 3 2021 lúc 13:04

\(\lim\limits_{x\rightarrow0}\dfrac{\sin ax}{ax}=1\Rightarrow\sin ax\sim ax\Leftrightarrow\sin^2ax\sim\left(ax\right)^2\)

\(1-\cos x=1-\cos2.\dfrac{x}{2}=2\sin^2\dfrac{x}{2}\sim2.\left(\dfrac{x}{2}\right)^2=\dfrac{x^2}{2}\)

\(\Rightarrow\lim\limits_{x\rightarrow0}\dfrac{1-\cos2017x}{x^2}\)

Ta co khi \(x\rightarrow0:1-\cos2017x\sim\dfrac{\left(2017x\right)^2}{2}=\dfrac{2017^2x^2}{2}\)

\(\Rightarrow\lim\limits_{x\rightarrow0}\dfrac{1-\cos2017x}{x^2}=\lim\limits_{x\rightarrow0}\dfrac{2017^2x^2}{2x^2}=\dfrac{2017^2}{2}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
VH
Xem chi tiết
AN
Xem chi tiết
DD
Xem chi tiết
TT
Xem chi tiết
DD
Xem chi tiết
NN
Xem chi tiết
TH
Xem chi tiết
JP
Xem chi tiết