Ôn tập toán 8

MC

Cho \(\begin{cases}a+b+c=abc\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\end{cases}\)

CMR:

 \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)

LC
9 tháng 6 2016 lúc 13:32

Ta có: \(a+b+c=abc\)

=>\(\frac{a+b+c}{abc}=1\)

=>\(\frac{a}{abc}+\frac{b}{abc}+\frac{c}{abc}=1\)

=>\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Lại có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

=>\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

=>ĐPCM

Bình luận (0)
DV
9 tháng 6 2016 lúc 13:32

À thấy rồi, làm nè :

Ta có 1/a^2 + 1/b^2 + 1/c^2 
= (1/a + 1/b + 1/c)^2 - 2 (1/ab + 1/ac + 1/bc) 
= 4 - 2 (c/abc + b/ abc + a/ abc) 
= 4 - 2 (a+b+c)/abc 
= 4 - 2abc / abc 
= 4 - 2 
= 2 (đpcm)

Bình luận (0)

Các câu hỏi tương tự
PP
Xem chi tiết
HP
Xem chi tiết
HN
Xem chi tiết
LC
Xem chi tiết
MP
Xem chi tiết
NL
Xem chi tiết
SL
Xem chi tiết
NT
Xem chi tiết
DN
Xem chi tiết