Đại số lớp 6

NQ

cho B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

so sánh B với 1

PT
21 tháng 7 2017 lúc 20:48

\(B=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=\dfrac{1}{1}-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

Ta thấy: \(\dfrac{99}{100}< 1\)

\(\Rightarrow B< 1\left(đpcm\right)\)

Bình luận (0)
MS
21 tháng 7 2017 lúc 22:14

\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

\(\left\{{}\begin{matrix}\dfrac{1}{2^2}< \dfrac{1}{1.2}\\\dfrac{1}{3^2}< \dfrac{1}{2.3}\\\dfrac{1}{4^2}< \dfrac{1}{3.4}\\\dfrac{1}{100^2}< \dfrac{1}{99.100}\end{matrix}\right.\)

\(\Rightarrow B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(\Rightarrow B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow B< 1-\dfrac{1}{100}\)

\(\Rightarrow B< 1\)

Bình luận (0)
TN
9 tháng 2 2018 lúc 19:30

Hỏi đáp Toán

Chúc bạn học tốt!

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NN
Xem chi tiết
PA
Xem chi tiết
BB
Xem chi tiết
HD
Xem chi tiết
NK
Xem chi tiết
LY
Xem chi tiết
DT
Xem chi tiết
CH
Xem chi tiết