Violympic toán 7

NM

Cho ba số nguyên dương x,y,z thỏa mãn: x + y + z = 2017 và cho biểu thức:

A=\(\frac{x}{2017-z}\) + \(\frac{y}{2017-x}\) +\(\frac{z}{2017-y}\)

CMR: giá trị của A ko phải số nguyên

CF
23 tháng 3 2020 lúc 15:10

Theo bài ra ta có x + y + z = 2017

\(\left\{{}\begin{matrix}2017-z=x+y\\2017-y=x+z\\2017-x=y+z\end{matrix}\right.\) (1)

Thay (1) vào \(A=\frac{x}{2017-z}+\frac{y}{2017-x}+\frac{z}{2017-y}\) ta được

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)

Lại có \(\left\{{}\begin{matrix}x< x+y< x+y+z\\y< y+z< x+y+z\\z< x+z< x+y+z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{x+y+z}< \frac{x}{x+y}< 1\\\frac{y}{x+y+z}< \frac{y}{y+z}< 1\\\frac{z}{x+y+z}< \frac{z}{x+z}< 1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\frac{x}{x+y+z}< \frac{x}{x+y}< \frac{x+z}{x+y+z}\\\frac{y}{x+y+z}< \frac{y}{y+x}< \frac{y+z}{x+y+z}\\\frac{z}{x+y+z}< \frac{z}{z+x}< \frac{z+y}{x+y+z}\end{matrix}\right.\)

( Áp dụng tính chất \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+c}\) )

\(\frac{x+y+z}{x+y+z}< \frac{x}{x+y}+\frac{y}{y+x}+\frac{z}{x+z}< \frac{2.\left(x+y+z\right)}{x+y+z}\)

⇔ 1 < A < 2

⇔ A ko phải là số nguyên

Học tốt ~~ lâu hơn lm hình r c ạ ))

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
WW
Xem chi tiết
TN
Xem chi tiết
LN
Xem chi tiết
TN
Xem chi tiết
MH
Xem chi tiết
DP
Xem chi tiết
QN
Xem chi tiết
HD
Xem chi tiết
MM
Xem chi tiết