Violympic toán 8

NK

Cho ba số dương a, b, c,. Chứng minh rằng: \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}>\dfrac{3}{a+b+c}\)

MS
7 tháng 4 2018 lúc 12:41

Có gì đâu nhỉ?

Cauchy-Schwarz:

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}=\dfrac{9}{2\left(a+b+c\right)}=\dfrac{4,5}{a+b+c}>\dfrac{3}{a+b+c}\)

Bình luận (0)
KK
7 tháng 4 2018 lúc 12:22

áp dụng BĐT cauchy- schwarz ta có

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{9}{2\left(a+b+c\right)}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{3}{a+b+c}\) (đpcm)

Bình luận (1)

Các câu hỏi tương tự
KH
Xem chi tiết
BT
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
NT
Xem chi tiết
BB
Xem chi tiết
PM
Xem chi tiết
LT
Xem chi tiết