Violympic toán 7

H24

cho ba số dương \(0\le x\le y\le z\le1\) chứng minh \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le2\)

AH
1 tháng 2 2020 lúc 21:41

Lời giải:

Vì $0\leq x\leq y\leq z\leq 1\Rightarrow 0\leq xy\leq xz\leq yz$

$\Rightarrow \frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\leq \frac{x+y+z}{xy+1}(1)$

Xét $\frac{x+y+z}{xy+1}-2=\frac{x+y+z-2xy-2}{xy+1}=\frac{(x-1)(1-y)+(z-xy-1)}{xy+1}\leq 0$ do $0\leq x\leq y\leq z\leq 1$)

$\Rightarrow \frac{x+y+z}{xy+1}\leq 2(2)$

Từ $(1);(2)\Rightarrow \frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\leq 2$ (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
VT
1 tháng 2 2020 lúc 20:46

Bài này mà lớp 7 á? Nguyễn Thiện Nhân

Bình luận (0)
 Khách vãng lai đã xóa
NS
3 tháng 2 2020 lúc 22:02

Lời giải:

0≤x≤y≤z≤1⇒0≤xy≤xz≤yz0≤x≤y≤z≤1⇒0≤xy≤xz≤yz

⇒xyz+1+yxz+1+zxy+1≤x+y+zxy+1(1)⇒xyz+1+yxz+1+zxy+1≤x+y+zxy+1(1)

Xét x+y+zxy+1−2=x+y+z−2xy−2xy+1=(x−1)(1−y)+(z−xy−1)xy+1≤0x+y+zxy+1−2=x+y+z−2xy−2xy+1=(x−1)(1−y)+(z−xy−1)xy+1≤0 do 0≤x≤y≤z≤10≤x≤y≤z≤1)

⇒x+y+zxy+1≤2(2)⇒x+y+zxy+1≤2(2)

Từ (1);(2)⇒xyz+1+yxz+1+zxy+1≤2(1);(2)⇒xyz+1+yxz+1+zxy+1≤2 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
VH
Xem chi tiết
TL
Xem chi tiết
NC
Xem chi tiết
CD
Xem chi tiết