Violympic toán 7

LH

cho b2 =ac,c2=bd(b,c,d khác 0,b+c khác d, b3+c3 khác d

chứng minh rằng: \(\dfrac{a^3+b^3-c^3}{b^3+c^3+d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\)

MS
3 tháng 3 2018 lúc 0:51

Ta có: \(b^2=ac;c^2=bd\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{b}{c}\\\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b-c}{b+c-d}\)

Đặt: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b-c}{b+c-d}=l\) ta có:

\(\left\{{}\begin{matrix}\left(\dfrac{a+b-c}{b+c-d}\right)^3=l^3\\\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=l^3\end{matrix}\right.\Rightarrowđpcm\)

Bình luận (0)

Các câu hỏi tương tự
HK
Xem chi tiết
MT
Xem chi tiết
DS
Xem chi tiết
AI
Xem chi tiết
ML
Xem chi tiết
NL
Xem chi tiết
TL
Xem chi tiết
ML
Xem chi tiết
HA
Xem chi tiết