Đại số lớp 7

LM

Cho B = 1phần 2 +(1phần 2 mũ 2)+(1phần 2 mũ 3) +.......+(1phần 2mũ 98) +(1phần 2 mũ 99)
Chứng minh rằng B<1

MV
17 tháng 7 2017 lúc 18:44

\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\\ =\left(2-1\right)\cdot\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}-\dfrac{1}{2^{99}}\\ =1-\dfrac{1}{2^{99}}< 1\)

Vậy \(B< 1\)

Bình luận (0)
MS
17 tháng 7 2017 lúc 20:58

\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\)

\(\Rightarrow2B=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\)

\(\Rightarrow2B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{97}}+\dfrac{1}{2^{98}}\)

\(\Rightarrow2B-B=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{97}}+\dfrac{1}{2^{98}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{98}}+\dfrac{1}{2^{99}}\right)\)

\(\Rightarrow B=1-\dfrac{1}{2^{99}}\)

\(\rightarrow B< 1\rightarrowđpcm\)

Bình luận (0)

Các câu hỏi tương tự
MA
Xem chi tiết
LA
Xem chi tiết
TT
Xem chi tiết
BH
Xem chi tiết
HV
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
QD
Xem chi tiết
TH
Xem chi tiết