Đại số lớp 6

KM

Cho A=\(\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+...+\frac{5}{4^{99}}\)

CMR: A<\(\frac{5}{3}\)

LF
29 tháng 1 2017 lúc 17:42

\(A=\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{99}}\)

\(A=5\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\right)\)

\(\frac{A}{5}=\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\)

\(\frac{4A}{5}=1+\frac{1}{4}+...+\frac{1}{4^{98}}\)

\(\frac{4A}{5}-\frac{A}{5}=\left(1+\frac{1}{4}+...+\frac{1}{4^{98}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\right)\)

\(\frac{3A}{5}=1-\frac{1}{4^{99}}\Rightarrow A=\frac{5}{3}-\frac{5}{3\cdot4^{99}}< \frac{5}{3}\)

Bình luận (0)

Các câu hỏi tương tự
KM
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
PL
Xem chi tiết
HL
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
IT
Xem chi tiết
LA
Xem chi tiết