Cho A = \(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\). Chứng minh rằng A < \(\dfrac{7}{4}\)
a, Cho b là số tự nhiên, b>1. Chứng minh rằng: \(\dfrac{1}{b}-\dfrac{1}{b+1}< \dfrac{1}{b^2}< \dfrac{1}{b-1}-\dfrac{1}{b}\)
b, Áp dụng phần a: Cho S\(=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\). Chứng minh rằng: \(\dfrac{2}{5}< S< \dfrac{8}{9}\)
Cho A = \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+.....+\dfrac{1}{2019^2}\)
Chứng minh rằng \(\dfrac{20}{101}< A< \dfrac{1}{4}\)
Cho \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2014^2}+\dfrac{1}{2015^2}+\dfrac{1}{2016^2}\). Chứng minh rằng: A không phải là số tự nhiên
chứng minh rằng:
E=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{3}{4}\)
Chứng minh rằng : A = \(\dfrac{1}{2}-\dfrac{2}{2^2}+\dfrac{3}{2^3}-\dfrac{4}{2^4}+....+\dfrac{99}{2^{99}}-\dfrac{100}{2^{100}}< \dfrac{2}{9}\)
Cho \(A=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2019}\)
Chứng minh A ko phải là số tự nhiên
\(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2017}{4^{2017}}\)
Chứng minh rằng :
\(A< \dfrac{1}{2}\)
Chứng minh rằng P>3 biet P= \(\dfrac{5}{2×1}+\dfrac{4}{1×11}+\dfrac{3}{11×2}+\dfrac{1}{2×15}+\dfrac{13}{15×4}+\dfrac{15}{4×43}+\dfrac{13}{43×8}\)