Đại số lớp 8

TH

Cho a,b,c,d là các số thức . Chứng minh rằng :
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

VT
22 tháng 10 2016 lúc 8:52

Trước hết , ta khai triển vế trái , sau đó , nhóm các hạng tử .

\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd\)

\(=\left(a^2c^2+a^2d^2\right)+\left(b^2c^2+b^2d^2\right)\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

Vậy \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\left(ĐPCM\right)\)

Bình luận (0)

Các câu hỏi tương tự
PS
Xem chi tiết
TA
Xem chi tiết
ND
Xem chi tiết
MH
Xem chi tiết
VQ
Xem chi tiết
CG
Xem chi tiết
NL
Xem chi tiết
SV
Xem chi tiết
VQ
Xem chi tiết