Violympic toán 8

LN

Cho (a+b+c)^2=a^2+b^2+c^2 và abc khác 0

CM \(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=3\)

N2
4 tháng 1 2018 lúc 20:44

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow ab+bc+ca=0\Leftrightarrow\dfrac{ab+bc+ca}{abc}=0\)\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) (1)

Ta có: \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\) (Bn thự cm nhé)

(1) \(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\Leftrightarrow abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=3\)

\(\Leftrightarrow\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=3\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
PA
Xem chi tiết
BB
Xem chi tiết
LN
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
MS
Xem chi tiết