Ôn tập toán 8

AD

Cho a,b,c>0 và \(a+b+c\le1\) .Chứng minh rằng:

\(\frac{1}{a^2+2\cdot b\cdot c}+\frac{1}{b^2+2\cdot a\cdot c}+\frac{1}{c^2+2\cdot a\cdot b}\)

HN
17 tháng 8 2016 lúc 21:18

Đề đúng : Cho a,b,c > 0 và \(a+b+c\le1\)

CMR : \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)

Đặt \(x=a^2+2bc,y=b^2+2ac,z=c^2+2ab\)

Áp dụng bđt Bunhiacopxki , ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(\sqrt{\frac{1}{x}.x}+\sqrt{\frac{1}{y}.y}+\sqrt{\frac{1}{z}.z}\right)^2=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) hay \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\) 

 

Bình luận (6)
LF
17 tháng 8 2016 lúc 21:38

Ta thấy: \(\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)=\left(a+b+c\right)^2\le1\)

Sử dụng Cosi 3 số ta suy ra

\(VT\ge\left[\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)\right]\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\right)\)

\(\ge3\sqrt[3]{\left(a^2+2bc\right)\left(b^2+2ac\right)\left(c^2+2ab\right)}\cdot3\sqrt[3]{\frac{1}{a^2+2bc}\cdot\frac{1}{b^2+2ac}\cdot\frac{1}{c^2+2ab}}=9\) (Đpcm)

Đẳng thức xảy ra khi\(\begin{cases}a+b+c=1\\a^2+2bc=b^2+2ac=c^2+2ab\end{cases}\)\(\Leftrightarrow a=b=c=\frac{1}{3}\)

Bình luận (0)
TP
17 tháng 8 2016 lúc 21:04

mk tìm  đc gtln

Đặt a+b=x b+c=y c+a=z

BDT cần cm ⇔(x+y)(y+z)(z+x)xyz (vì a+b+c=1)

Đến đây cô si bình thường ra min bằng 8

Bình luận (5)
HP
17 tháng 8 2016 lúc 21:07

bn thêm VP của bđt vào đi,đề thiếu ko làm đc

Bình luận (2)
LF
17 tháng 8 2016 lúc 21:11

chứng minh cái j v bn ==

Bình luận (0)
AD
17 tháng 8 2016 lúc 21:40

phần cuối đề mk viết thiếu là \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)

Bình luận (1)

Các câu hỏi tương tự
AD
Xem chi tiết
AD
Xem chi tiết
NL
Xem chi tiết
AD
Xem chi tiết
AD
Xem chi tiết
TL
Xem chi tiết
HK
Xem chi tiết
HG
Xem chi tiết
NH
Xem chi tiết