Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. Cho a,b,c là 3 cạnh tam giác sao cho a+b+c=2
CM:a^2+b^2+c^2+2abc < 2
2. Cho a,b,c là 3 cạnh tam giác
CM: B=a^4+b^4+c^4-2a^2.b^2-2b^2.c^2-2c^2.a^2 < 0
3. Cho a,b,c dương biết a,b,c khác nhau
CM: A=a^3+b^3+c^3-3abc > 0
Cho mình sửa lại đề :
Cho biểu thức A = a^3 +b^3 + c^3+a^2(b+c)+b^2(c+a)+c^2(a+b)Cho a+b+c = 1 .
Hãy tìm giá trị nhỏ nhất của A
Cho x = b^2 + a
y = a^b + c
z = c^a + b
là các số nguyên tố (a,b,c thuộc N*) cmr 3 số x,y,z ít nhất có 2 số bằng nhau
1. Cho a+b+c=a^2+b^2+c^2=1 và a/x=b/y=c/z
Cm: xy+yz+zx=0
2.Cho x/a+y/b+z/c=1 và a/x^2+b/y^2+c/z^2=0
Tính: A=x^2/a^2+y^2/b^2+z^2/c^2
3.Tìm a,b biết:(a-1)^2+(b-1)^2=10a+b
và 0<a<10; -1<b<10
-Cho a,b thuộc Z thỏa (a^2-ab+b^2) chia hết cho 2. Chứng minh(a^3+b^3) chia hết cho 8
-Tìm hai số nguyên liên tiếp mà hiệu các bình phương của hai số đó bằng 2013
-Tìm các số nguyên n để 2013/[(4n^2)-4n+3] có giá trị nguyên
-Cho biết tồn tại hai số thực a,b khác 0 thỏa 1/a -1/b =1/ab. Tính giá trị M= (a^3 - b^3 +1)/(a^2 + b^2 -1)
cho a b c là độ dài 3 cạnh tam giác chứng minh a^3(b^2-c^2)+ b^3(c^2-a^2) + c^3(a^2-b^2) <0 với a<b<c
1. N=k^4+2k^3-16k^2-2k+15 với k nguyên
Tìm điều kiện của k để N chia hết cho 16
2. cmr nếu 1/a+1/b+1/c=2 và a+b+c=abc
thì 1/a^2+1/b^2+1/c^2=2 với a,b,c>0
a. Cho a^2 + b^2 + c^2 + 3= 2(a + b + c). Chứng minh rằng: a=b=c=1
b. Cho (a + b + c)^2 = 3(ab + ac + bc). Chứng minh rằng: a=b=c
c. Cho a^2 + b^2 + c^2 = ab + ac +bc. Chứng minh rằng: a=b=c
Bài 1 :a, cho x^2 + 4y^2 = 4xy . CMR : x = 2y
b, cho a^2 + b^2 + c^2 + 3 = 2 (a+ b + c) . CMR : a= b= c = 1
Bài 2: cho hình thang ABCD (AB //CD) .Trên cạnh AD lây 3 điểm E; M;P sao cho : AE= MP = PD . Trên cạnh BC lấy 3 điểm F, N , Q sao cho : PF = FN = NQ . Cho biết EF = 8cm ; PQ = 12cm. Tính Mn; AB ; CD