Violympic toán 8

CM

cho a,b,c thỏa mãn a+b+c=a^3+b^3+c^3=1.Tính A=a^2021+b^2021+c^2021

AH
16 tháng 7 2021 lúc 10:37

Lời giải:
Ta nhớ đến HĐT quen thuộc:

$a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)$

Thay $a+b+c=a^3+b^3+c^3=1$ vô thì:

$1=1^3-3(a+b)(b+c)(c+a)\Rightarrow (a+b)(b+c)(c+a)=0$

$\Rightarrow a+b=0$ hoặc $b+c=0$ hoặc $c+a=0$

Không mất tổng quát, giả sử $a+b=0$. Khi đó: $a=-b$ và $c=1-(a+b)=1$

$A=a^{2021}+b^{2021}+c^{2021}=(-b)^{2021}+b^{2021}+1^{2021}=1$

 

Bình luận (0)

Các câu hỏi tương tự
UI
Xem chi tiết
HC
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
NC
Xem chi tiết
ND
Xem chi tiết
QP
Xem chi tiết
NH
Xem chi tiết
BB
Xem chi tiết