Ôn tập toán 7

ML

Cho a,b,c là số đo 3 cạnh tam giác:

Chứng minh rằng: \(1< \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)

H24
11 tháng 4 2017 lúc 10:33

Mình xem lại đúng là hai đề có khác tuy nhiên bản chất giống nhau kiểu như thay số khác thôi

Biểu thức cần c/m bài trước: \(B_{cu}=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)

Biểu thức cần C/m bài này: \(A=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

ý bạn cái mẫu không giống nhau:

Không chứng minh lại cái này nữa \(\dfrac{x}{y}< \dfrac{x+p}{x+p}\forall x,y,p>0;\left(x< y\right)\)(*) có thể quay lại câu trước xem cách chứng minh (*). ok

\(\left\{{}\begin{matrix}\dfrac{a}{b+c}< \dfrac{a+a}{a+b+c}\\\dfrac{b}{c+a}< \dfrac{b+b}{a+b+c}\\\dfrac{c}{c+a}< \dfrac{c+c}{a+b+c}\end{matrix}\right.\) công hết lai

\(VT=A< VP=\dfrac{2a+2b+2c}{a+b+c}=2\)

Bạn thấy hai bài giống nhau chưa

OK

Bình luận (0)
H24
10 tháng 4 2017 lúc 21:53

cái này có quá nhiều rồi bạn bấm vào cái nút góc trên tay phải hình mũi tên quay xuống thấy --> tha hồ lựa chọn

đừng đăng câu khi quá nhiều.

đấy là ý kiến riêng mình thấy vậy

và khuyên các bạn giải bài gặp bài lập lại nhiều quá đừng giải nữa => nhàm chán chẳng có hứng gì

Bình luận (8)

Các câu hỏi tương tự
NT
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
CA
Xem chi tiết
NL
Xem chi tiết
HL
Xem chi tiết
NT
Xem chi tiết
TM
Xem chi tiết
NT
Xem chi tiết