Chương I : Số hữu tỉ. Số thực

VH

Cho a,b,c là ba số thực \(\left(a,b,c\ne0\right)\)thỏa mãn điều kiện \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)

Tính \(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)

MS
14 tháng 12 2017 lúc 23:38

\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\dfrac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)

Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

Khi đó \(P=\dfrac{-abc}{abc}=-1\)

Với \(a+b+c\ne0\) ,áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\a+c=2b\end{matrix}\right.\)

Khi đó \(P=\dfrac{8abc}{abc}=8\)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
MA
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
L7
Xem chi tiết
TV
Xem chi tiết
HH
Xem chi tiết
ND
Xem chi tiết
BD
Xem chi tiết