Violympic toán 8

NN

Cho a,b,c là ba số thảo mãn: abc=1 và \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Tính giá trị biểu thức :

P=\(\left(a^{2019}-1\right)\left(b^{2020}-1\right)\left(c^{2021}-1\right)\)

AH
16 tháng 11 2019 lúc 9:18

Lời giải:

Do $abc=1$ nên:

$a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=bc+ac+ab$

$\Leftrightarrow ab+bc+ac-a-b-c=0$

$\Leftrightarrow (ab-a-b+1)+bc+ac-c-1=0$

$\Leftrightarrow (ab-a-b+1)+bc+ac-c-abc=0$

$\Leftrightarrow (ab-a-b+1)+c(b+a-1-ab)=0$

$\Leftrightarrow (ab-a-b+1)(1-c)=0$

$\Leftrightarrow (a-1)(b-1)(1-c)=0$

$\Leftrightarrow (a-1)(b-1)(c-1)=0$

Do đó:

$P=(a^{2019}-1)(b^{2019}-1)(c^{2019}-1)=(a-1)(a^{2018}+...+1)(b-1)(b^{2019}+...+1)(c-1)(c^{2020}+...+1)$

$=(a-1)(b-1)(c-1).(a^{2018}+...+1)(b^{2019}+...+1)(c^{2020}+...+1)=0$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TT
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
NH
Xem chi tiết
BB
Xem chi tiết
HA
Xem chi tiết
HN
Xem chi tiết
TQ
Xem chi tiết
H24
Xem chi tiết