Violympic toán 8

H24

Cho a,b,c > 0 . Chứng minh rằng: \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}\ge2\left(\frac{a}{b+1}+\frac{b}{c+1}+\frac{c}{a+1}\right)\)

Y
19 tháng 5 2019 lúc 10:11

Theo BĐT AM-GM :

\(\sqrt{b}=\sqrt{b\cdot1}\le\frac{b+1}{2}\)

\(\Rightarrow\frac{a}{\sqrt{b}}\ge\frac{a}{\frac{b+1}{2}}=\frac{2a}{b+1}\)

Dấu "=" xảy ra \(\Leftrightarrow b=1\)

+ Tương tự ta cm đc :

\(\frac{b}{\sqrt{c}}\ge\frac{2b}{c+1}\). Dấu "=" xảy ra \(\Leftrightarrow c=1\)

\(\frac{c}{\sqrt{a}}\ge\frac{2c}{a+1}\). Dấu "=" xảy ra \(\Leftrightarrow a=1\)

Do đó : \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}\ge2\left(\frac{a}{b+1}+\frac{b}{c+}+\frac{c}{a+1}\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Bình luận (0)

Các câu hỏi tương tự
LL
Xem chi tiết
VL
Xem chi tiết
VH
Xem chi tiết
H24
Xem chi tiết
TB
Xem chi tiết
NV
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết