\(a^2+b^2+ab\ge6\left(a+b\right)\)
Ta có:\(a^2+b^2\ge2ab\)
=>Cần cm:\(3ab\ge6\left(a+b\right)\)
\(\Leftrightarrow ab\ge2\left(a+b\right)\)
\(\Leftrightarrow\left(a-2\right)\left(b-2\right)\ge4\)(đúng vì a,b>=4)
"="<=>a=b=4
\(a^2+b^2+ab\ge6\left(a+b\right)\)
Ta có:\(a^2+b^2\ge2ab\)
=>Cần cm:\(3ab\ge6\left(a+b\right)\)
\(\Leftrightarrow ab\ge2\left(a+b\right)\)
\(\Leftrightarrow\left(a-2\right)\left(b-2\right)\ge4\)(đúng vì a,b>=4)
"="<=>a=b=4
cho a,b >0 và a+b=1.cmr
\(\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}\ge6\)
BT1: Cho a,b,c>0. CMR: \(\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2+\left(c+\dfrac{1}{c}\right)^2>33\)
BT2: Cho a,b,c là các số thực. CMR:
\(a^2+b^2+c^2\ge ab+bc+ac+\dfrac{\left(a-b\right)^2}{26}+\dfrac{\left(b-c\right)^2}{6}+\dfrac{\left(c-a\right)^2}{2009}\)
Mk đang cần gấp. Giúp mk với!!!
Cho a > b > 0 và ab=1. CMR:
\(\dfrac{\left(a+b\right)^2-2}{\left(a+1\right)\left(1-b\right)}\ge2\sqrt{2}\)
Cho \(a,b,c\) là các số thực không âm. CMR:
\(3\left(a^2+b^2+c^2\right)\ge\) \(\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\) \(+\left(a-b\right)^2\) \(+\left(b-c\right)^2+\left(c-a\right)^2\ge\left(a+b+c\right)^2\)
1) cho a,b,c dương thỏa abc<1
C/M : \(\dfrac{1}{1+a+ab}+\dfrac{1}{1+b+bc}+\dfrac{1}{1+c+ca}>1\)
2) cho a,b,c không âm thỏa a+b+c=1
CMR \(a^2+b^2+c^2\ge4\left(ab+bc+ca\right)-1\)
3)cho x,y,z,t thỏa \(x^2+y^2+z^2+t^2\le1\)
CMR :\(\sqrt{\left(x+z\right)^2+\left(y-t\right)^2}+\sqrt{\left(x-z\right)^2+\left(y+t\right)^2}\le2\)
Với a, b là các số thực dương thỏa mãn ab+a+b=1. CMR: \(\frac{a}{1+a^2}+\frac{b}{1+b^2}=\frac{1+ab}{\sqrt{2\left(1+a^2\right)\left(1+b^2\right)}}\)
Cho 3 số a , b , c đôi 1 khác nhau . CMR :
\(\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}+\dfrac{\left(b+c\right)^2}{\left(b-c\right)^2}+\dfrac{\left(c+a\right)^2}{\left(c-a\right)^2}\ge2\)
Cho a , b , c dương
CMR \(\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge3\left(1+\dfrac{3}{2+abc}\right)^4\)
cho a,b,c là các số thực dương.cmr
\(\dfrac{bc}{\left(a+b\right)\left(a+c\right)}+\dfrac{ac}{\left(b+c\right)\left(b+a\right)}+\dfrac{ab}{\left(c+a\right)\left(c+b\right)}\ge\dfrac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{2\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)}\)