Ta có: \(a>b\Leftrightarrow4a>4b\left(1\right)\) và \(-2>-3\left(2\right)\)
Cộng the từng vế của 2 bất pt: \(\Rightarrow4a-2>4b-3\)
Ta có: \(a>b\Leftrightarrow4a>4b\left(1\right)\) và \(-2>-3\left(2\right)\)
Cộng the từng vế của 2 bất pt: \(\Rightarrow4a-2>4b-3\)
cho a>b chứng minh :
4a-2 > 4b-3
a>b
4a>4b ( nhân 2 vế với 4
4a+(-2)>4b+(-2) ( cộng 2 vế với -2)
4a-2>4b-3 ( vì -2 > -3)
=> 4a-2>4b-3
các bạn xem hộ mình giải đúng ko ..........
cho a>b chứng minh :
4a-2 > 4b-3
-5a+1 < -5b+2
cho a>b chứng minh :
3a +15 > 3b+15
4a-2 > 4b-3
-5a+1 < -5b+2
làm hộ nha mới học nên mình chưa hiểu.............
Cho a,b,c là độ dài 3 cạnh một tam giác. Tìm:
\(MinP=\dfrac{4a}{b+c-a}+\dfrac{4b}{c+a-b}+\dfrac{4c}{a+b-c}\)
Cho a,b,c > 0. Tìm: \(P=\dfrac{4a}{b+c-a}+\dfrac{4b}{c+a-b}+\dfrac{4c}{a+b-c}\)
ai làm hộ minh câu này k mình đang cần gấp
cho a,b thỏa \(\dfrac{a^2+b^2}{a-2b}=2\)
tìm gtrị lớn nhất của P=8a+4b
Bài 1: Cho x+y+z+xy+xz+yz=6
Chứng minh x2+y2+z2≥3
Bài 2: Chứng minh 2(a4+b4)≥ab3+a3b+2a2b2 với mọi a,b
1/Cho (a2 - bc)( b- abc) = (b2 -ac)(a-abc)
a/ Chứng minh rằng: 1/a + 1/b + 1/c = a+b+c
b/ Chứng tỏ : a(b-c)(b+c-a)2 + c(a-b)(a+b-c)2 = b(a-c)(a+c-b)
2/ Với x là 1 số thực bất kỳ. Chứng minh rằng x-x2 +1: x2 -1 <1
3/ Cho các số x,y thỏa mãn : Chứng minh rằng x2 +y2 +(1+xy : x+y)2 >=2
cho a, b, c thỏa mãn a+b+c=2, ab+bc+ac=1. Chứng minh 4/3 >= a,bb,c >=0