Ôn tập toán 6

DM

Cho A=9999931999-5555571997.Chung minh rang a chia het cho 5

DH
24 tháng 4 2017 lúc 20:20

Ta có:A= 9999931999- 5555571997

= 9999931998 . 999993 - 5555571996 . 555557

= ( 9999932)999 . 999993- ( 555552)998 . 555557

= (....9)999 . 999993 - (....9)998 . 555557

= (....9) . 999993 - (....1) . 555557

= (...7) - (...7)

= (...0)

Chữ số tận cùng của A= 0

=> A chia hết cho 5 ( đpcm)

Chúc bạn học tốt nhoa...!hehe

Bình luận (0)
NH
24 tháng 4 2017 lúc 20:23

\(\)Ta có :

\(A=999993^{1999}-555557^{1997}\)

\(A=999993^{1998}.999993^1-555557^{1996}.555557^1\)

\(A=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)

\(A=\left(......9\right).999993-\left(....1\right).555557\)

\(A=\left(....7\right)-\left(...7\right)=\left(...0\right)\)

\(\Rightarrow\) Chữ số tận cùng của A là \(0\)

\(\Rightarrow A⋮5\)

~ Chúc bn học tốt ~

Bình luận (0)
HQ
24 tháng 4 2017 lúc 20:29

Ta có:

Muốn chứng minh \(A=999993^{1999}-555557^{1997}⋮5\) ta xét chữ số tận cùng của số hạng:

\(*)\) \(999993^{1999}=\left(...3\right)^{1999}\Rightarrow\) Ta xét \(3^{1999}\)

Ta có: \(3^{1999}=\left(3^4\right)^{499}.3^3=\left(...1\right)^{499}.27=\left(...7\right)\)

\(*)\) \(555557^{1997}=\left(...7\right)^{1997}\Rightarrow\) Ta xét \(7^{1997}\)

Ta có: \(7^{1997}=\left(7^4\right)^{499}.7=\left(...1\right)^{499}.7=\left(...7\right)\)

\(\Rightarrow A=999993^{1999}-555557^{1997}=\left(...7\right)-\left(...7\right)=0\)

Mà số có chữ số tận cùng là \(0\Leftrightarrow\) Số đó chia hết cho \(5\)

Vậy \(A=999993^{1999}-555557^{1997}⋮5\) (Đpcm)

Bình luận (0)

Các câu hỏi tương tự
QN
Xem chi tiết
H24
Xem chi tiết
JN
Xem chi tiết
H24
Xem chi tiết
QN
Xem chi tiết
NH
Xem chi tiết
DH
Xem chi tiết
NL
Xem chi tiết
SO
Xem chi tiết