Ta có:A= 9999931999- 5555571997
= 9999931998 . 999993 - 5555571996 . 555557
= ( 9999932)999 . 999993- ( 555552)998 . 555557
= (....9)999 . 999993 - (....9)998 . 555557
= (....9) . 999993 - (....1) . 555557
= (...7) - (...7)
= (...0)
Chữ số tận cùng của A= 0
=> A chia hết cho 5 ( đpcm)
Chúc bạn học tốt nhoa...!
\(\)Ta có :
\(A=999993^{1999}-555557^{1997}\)
\(A=999993^{1998}.999993^1-555557^{1996}.555557^1\)
\(A=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)
\(A=\left(......9\right).999993-\left(....1\right).555557\)
\(A=\left(....7\right)-\left(...7\right)=\left(...0\right)\)
\(\Rightarrow\) Chữ số tận cùng của A là \(0\)
\(\Rightarrow A⋮5\)
~ Chúc bn học tốt ~
Ta có:
Muốn chứng minh \(A=999993^{1999}-555557^{1997}⋮5\) ta xét chữ số tận cùng của số hạng:
\(*)\) \(999993^{1999}=\left(...3\right)^{1999}\Rightarrow\) Ta xét \(3^{1999}\)
Ta có: \(3^{1999}=\left(3^4\right)^{499}.3^3=\left(...1\right)^{499}.27=\left(...7\right)\)
\(*)\) \(555557^{1997}=\left(...7\right)^{1997}\Rightarrow\) Ta xét \(7^{1997}\)
Ta có: \(7^{1997}=\left(7^4\right)^{499}.7=\left(...1\right)^{499}.7=\left(...7\right)\)
\(\Rightarrow A=999993^{1999}-555557^{1997}=\left(...7\right)-\left(...7\right)=0\)
Mà số có chữ số tận cùng là \(0\Leftrightarrow\) Số đó chia hết cho \(5\)
Vậy \(A=999993^{1999}-555557^{1997}⋮5\) (Đpcm)