Cho biểu thức A=$\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2}{x^2-4}$
a) Rút gọn biểu thức A
b) tìm x để A nhận giá trị nguyên
Bài 1. Tìm GTNN của A.
A =\(\frac{x^4+2x^3+8x+16}{x^4-2x^3+8x^2-8x+16}\)
Bài 2. Rút gọn biểu thức và tính giá trị với x + y = 2005
P = \(\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)
Bài 3. Cho b>a>0 và \(\frac{a^2+b^2}{ab}\) = \(\frac{10}{3}\)
Tính A = \(\frac{a-b}{a+b}\)
1,\(A=\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right).\left(\frac{2}{x}-1\right)\)
a, rút gọn A
b, tính giá trị của biểu thức A tại x thỏa mãn 2x2+x=0
c tìm x để A = \(\frac{1}{4}\)
D, TÍM X nguyên để A nguyên dương
cho biểu thức \(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)
a, rút gọn B
b,tính giá trị của biểu thức B tại x thỏa mãn \(\left|2x+1\right|=5\)
Cho A = ( \(\frac{4x}{x^2-4}\) + \(\frac{2x-4}{x+2}\) ) . \(\frac{x+2}{2x}\) + \(\frac{2}{2-x}\) ( x khác 0 , x khác -2 , x khác 2 )
a) Rút gọn A
b) Tính A khi x = 4
c) Tìm giá trị nguyên của x để A nhận nguyên
a) Tìm x,y biết: x4+x2-y2+y+10=0
b) Tính giá trị biểu thức: \(\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(30^4+\frac{1}{4}\right)}\)
Cho biểu thức:
\(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
a, tìm điều kiện của x để A có nghĩa
b, rút gọn A
c, tìm x để A = \(\frac{-3}{4}\)
d, tìm x để biểu thức A nguyên
e, tính giá trị của biểu thức A khi \(x^2-9\) = 0
1. Làm tính nhân :
a) ( \(\frac{1}{2}\)a^3 b^2 - \(\frac{3}{4}\)ab^4 ) ( \(\frac{4}{3}a^3\)b )
b) ( -a^4 x^5 ) ( -a^6x + 2a^3 x^2 - 11ax^5 )
1/ CMR:
a) với mọi x khác 1 biểu thức:
P = \(\frac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\) luôn nhận giá trị dương
b) với mọi x, biểu thức:
Q = \(\frac{-2x^2-2}{x^4+2x^3+6x^2+2x+5}\) luôn nhận giá trị âm
2/ Cho \(x\ne0,y\ne0,z\ne0\) và x = y+z
\(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)
CMR: \(\frac{1}{x^2}-\frac{1}{y^2}-\frac{1}{z^2}=1\)
3/ Cho \(a\ne0,b\ne0,c\ne0\) và
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)=\(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\)
CMR: x = y = z = 0