A< \(\frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2012+2013}\)
⇔ A< \(\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2012}-\frac{1}{2013}\)
⇔ A<\(\frac{1}{4}+\frac{1}{2}-\frac{1}{2013}\)
vì \(\frac{1}{4}+\frac{1}{2}-\frac{1}{2013}< \frac{3}{4}\)
nên A < \(\frac{3}{4}\)