Bài 2: Tỉ số lượng giác của góc nhọn

DA

Cho a>1 ,b>1.CM \(\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge0\) (Áp dụng bất đẳng thức Cô-si)

BD
6 tháng 4 2017 lúc 11:24

Đề có bị sai không bạn theo mình thì phải là \(\ge8\) mới đúng

Áp dụng bất đẳng thức cô si cho hai số thực không âm ta có :

\(\dfrac{a^2}{b-1}+4\left(b-1\right)\ge2\sqrt{\dfrac{a^2}{b-1}\times4\left(b-1\right)}=4a\) (1)

\(\dfrac{b^2}{a-1}+4\left(a-1\right)\ge2\sqrt{\dfrac{b^2}{a-1}\times4\left(a-1\right)}=4b\) (2)

Cộng (1) và (2) vế theo vế ,ta được :

\(\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}+4a+4b-8\ge4a+4b\)

\(\Rightarrow\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge8\)

Dấu "="xảy ra khi:a=b=2

Vậy \(\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge8\) với a>1,b>1

Bình luận (0)

Các câu hỏi tương tự
LV
Xem chi tiết
NL
Xem chi tiết
TA
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
VD
Xem chi tiết
DT
Xem chi tiết
NN
Xem chi tiết
NL
Xem chi tiết