tổng bằng 0 thì ta => (x+2y+z)^2 =0
Ix-y-3I=0
(z+6)^4 =0
bn tự làm tiếp
tổng bằng 0 thì ta => (x+2y+z)^2 =0
Ix-y-3I=0
(z+6)^4 =0
bn tự làm tiếp
Có bao nhiêu cặp số (x; y; z) thỏa mãn \(\left(x-\frac{1}{3}\right)\left(y-\frac{1}{2}\right)\left(z-5\right)=0\) và x + 2 = y + 1 = z + 3?
Cho ba số x,y,z khác 0 thỏa mãn x+y+z=0.Tính \(\dfrac{2x\left(x+y\right)\left(z+x\right)+y\left(x+y\right)\left(y+z\right)}{z\left(x+z\right)\left(y+z\right)}\)
Có bao nhiêu cặp số \(\left(x;y;z\right)\) thỏa mãn \(\left(x-\dfrac{1}{3}\right)\left(y-\dfrac{1}{2}\right)\left(z-5\right)=0\) và \(x+2=y+1=z+3\)
Cho 3 số x,y,z khác 0 thoả mãn điều kiện \(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức :
\(B=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)
cho x,y,z thỏa mãn
\(\dfrac{2x+2y-z}{z}=\dfrac{2x-y+2z}{y}=\dfrac{-x+2y+2z}{x}\)
Tính \(M=\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8xyz}\)
Cho 3 chữ số x; y; z khác 0 và x + y z khác 0 thỏa mãn điều kiện :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Tính giá trị biểu thức :
\(B=\left(1+\frac{x}{y}\right).\left(1+\frac{y}{2}\right).\left(1+\frac{z}{x}\right)\)
a,\(\left|3x-4\right|+\left|3y+5\right|=0\) b,\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\) c,\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)
d,\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\) e,\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\le0\)
Giups mình giải bài tìm x,y,z này nhé!!! Cảm ơn nhiều ạ!!!
Cho x,y,z là 3 số nguyên dương , nguyên tố cùng nhau và \(\left(x-z\right)\left(y-z\right)=z^2\) . Đặt a = xyz . Chứng minh rằng a là số chính phương
Cho ba số x, y, z đôi một phân biệt thỏa mãn \(\dfrac{x}{2015}=\dfrac{y}{2016}=\dfrac{z}{2017}\)
Vậy \(\left(x-z\right)^3:\left[\left(x-y\right)^2\left(y-z\right)\right]=.......\)