Bài tập cuối chương 2

HM

Cho \(a \ge 2\). Chứng minh:

a. \({a^2} \ge 2a\)

b. \({\left( {a + 1} \right)^2} \ge 4a + 1\)

HM
29 tháng 3 2024 lúc 17:53

Do \(a \ge 2\) nên \(a - 2 \ge 0\).

a. Xét hiệu: \({a^2} - 2a = a\left( {a - 2} \right) \ge 0\).

Vậy \({a^2} \ge 2a\).

b. Xét hiệu: \({\left( {a + 1} \right)^2} - \left( {4a + 1} \right)\) \( = {a^2} + 2a + 1 - 4a - 1 \) \(= {a^2} - 2a \) \(= a\left( {a - 2} \right) \ge 0\).

Vậy \({\left( {a + 1} \right)^2} \ge 4a + 1\). 

Bình luận (0)