Nếu \(5a^2+15ab-b^2⋮49\)
\(\Rightarrow5a^2+15ab-b^2⋮7\left(1\right)\)
Mặt khác lại có:
\(\left(5a^2+15ab-b^2\right)+\left(3a+b\right)^2\)
\(=7a\cdot\left(2a+3b\right)⋮7\left(2\right)\)
Từ (1) và (2) suy ra:
\(\left(3a+b\right)^2⋮7\Rightarrow3a+b⋮7\)
Nếu \(3a+b⋮7\) ta có:
\(\left(3a+b\right)+2\cdot\left(2a+3b\right)=7\cdot\left(a+b\right)⋮7\)
\(\Rightarrow2\cdot\left(2a+3b\right)⋮7\Rightarrow2a+3b⋮7\)
\(\Rightarrow\left(5a^2+15ab-b^2\right)+\left(3a+b\right)^2\)
\(=7a\cdot\left(2a+3b\right)⋮49\left(3\right)\)
Vì \(3a+b⋮7\) nên \(\left(3a+b\right)^2⋮49\left(4\right)\)
Từ (3) và (4) suy ra:
\(5a^2+15ab-b^2⋮49\)
\(\Leftrightarrow3a+b⋮7\)
đầu bài đúng ko đó bn
mk thấy sao sao
bn xem lại hộ mk
đề sai, phải là 15ab nha bạn