Bài 10: Nhân hai số nguyên khác dấu

NN

cho a, b , c ∈ Z , biết ab-ac+ bc-\(^{c^2}\)=-1

chứng minh rằng hai số a và b đối nhau

AH
30 tháng 1 2020 lúc 20:51

Lời giải:

$ab-ac+bc-c^2=-1$

$\Leftrightarrow (ab-ac)+(bc-c^2)=-1$

$\Leftrightarrow a(b-c)+c(b-c)=-1$

$\Leftrightarrow (a+c)(b-c)=-1$

Do $a,b,c\in\mathbb{Z}$ nên $a+c,b-c\in\mathbb{Z}$

Do đó có 2 TH xảy ra.

TH1: $a+c=1; b-c=-1$

$\Rightarrow a+c+b-c=0$

$\Rightarrow a+b=0$ nên $a,b$ là 2 số đối nhau (đpcm)

TH2: $a+c=-1; b-c=1$: hoàn toàn tương tự.

Vậy........

Bình luận (0)
 Khách vãng lai đã xóa
TD
6 tháng 4 2020 lúc 19:33

ab−ac+bc−c2=−1ab−ac+bc−c2=−1

⇔(ab−ac)+(bc−c2)=−1⇔(ab−ac)+(bc−c2)=−1

⇔a(b−c)+c(b−c)=−1⇔a(b−c)+c(b−c)=−1

⇔(a+c)(b−c)=−1⇔(a+c)(b−c)=−1

Do a,b,c∈Za,b,c∈Z nên a+c,b−c∈Za+c,b−c∈Z

Do đó có 2 TH xảy ra.

TH1: a+c=1;b−c=−1a+c=1;b−c=−1

⇒a+c+b−c=0⇒a+c+b−c=0

⇒a+b=0⇒a+b=0 nên a,ba,b là 2 số đối nhau (đpcm)

TH2: a+c=−1;b−c=1a+c=−1;b−c=1: hoàn toàn tương tự.

Vậy........

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
YD
Xem chi tiết
DD
Xem chi tiết
TD
Xem chi tiết
ST
Xem chi tiết
YD
Xem chi tiết
LT
Xem chi tiết
YD
Xem chi tiết
NK
Xem chi tiết
NT
Xem chi tiết