Violympic toán 8

NG

cho a, b, c là các số \(\ne\) 0 thỏa mãn: \(a^3+b^3+c^3=3abc\)

Tính giá trị biểu thức: \((1+\frac{a}{b})(1+\frac{b}{c})(1+\frac{c}{a})\).

Giúp tớ đi, huhu...

Y
5 tháng 7 2019 lúc 22:20

\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)

+ TH1 : a + b + c = 0 ta có :

\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}\)

\(=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=-1\)

+ TH2 : \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

Khi đó : \(A=\left(1+1\right)\cdot\left(1+1\right)\cdot\left(1+1\right)=8\)

Bình luận (0)