+ \(a^2+1=a^2+ab+bc+ca\)
\(=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
+ Tương từ ta cm đc :
\(b^2+1=\left(a+b\right)\left(b+c\right)\)
\(c^2+1=\left(a+c\right)\left(b+c\right)\)
Do đó : \(Q=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)
\(\Rightarrow Q=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Vì a,b,c là các số hữu tỉ nên \(\left(s+b\right)\left(b+c\right)\left(c+a\right)\)là số hữu tỉ
Do đó suy ra đpcm
Đúng 2
Bình luận (0)