Ta có:
\(a+b+c+d=0\Rightarrow a+b=-\left(c+d\right)\)
Do đó: \(\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Rightarrow a^3+3a^2b+3ab^2+b^3=-c^3-3c^2d-3cd^2-d^2\)
\(\Rightarrow a^3+3ab\left(a+b\right)+b^3=-c^3-3cd\left(c+d\right)-d^2\)
\(\Rightarrow a^3+b^3+c^3+d^3=-3cd\left(c+d\right)-3ab\left(a+b\right)\)
Vì \(a+b=-\left(c+d\right)\) nên
\(\Rightarrow a^3+b^3+c^3+d^3=3cd\left(a+b\right)-3ab\left(a+b\right)\)
\(\Rightarrow a^3+b^3+c^3+d^3=3\left(a+b\right)\left(cd-ab\right)\)
\(\Rightarrow a^3+b^3+c^3+d^3-3\left(a+b\right)\left(cd-ab\right)=0\)
Chúc bạn học tốt!!!
<br class="Apple-interchange-newline"><div id="inner-editor"></div>⇔a+c = -( b+ d)
⇔(a+c)3 = - ( b+d)3
⇔a3 + c3 + 3ac.(a+c) = - [ b3 + d3 + 3bd( b+d) ]
⇔a3 + b3 + c3 + d3 = -3bd(b+d) - 3ac(a+c)
⇔a3+b3+c3+d3= -3bd( b+d) + 3ac( b+d)
⇔a3+b3+c3+d3=3.(ac-bd)(d+b)