Đại số lớp 7

NT

Cho tỉ lệ thức : \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng : \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)

SG
23 tháng 10 2016 lúc 11:25

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a+b}{c+d}\right)^3\left(1\right)\)

\(\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3+b^3}{c^3+d^3}\left(2\right)\)

Từ (1); (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
NV
Xem chi tiết
BT
Xem chi tiết
DV
Xem chi tiết
HT
Xem chi tiết
TQ
Xem chi tiết
HB
Xem chi tiết
TQ
Xem chi tiết
TD
Xem chi tiết