Bài 4: Ôn tập chương Giới hạn

LN

cho 6 số thực a1<a2<a3<a4<a5<a6. Chứng minh rằng phương trình (x-a1)(x-a3)(x-a5)+(x-a2)(x-a4)(x-a6)=0 có đúng 3 nghiệm phân biệt.

PD
6 tháng 4 2021 lúc 22:09

Đặt \(f\left(x\right)=\left(x-a_1\right)\left(x-a_3\right)\left(x-a_5\right)+\left(x-a_2\right)\left(x-a_4\right)\left(x-a_6\right)\)

\(f\left(a_1\right)=\left(a_1-a_2\right)\left(a_1-a_4\right)\left(a_1-a_6\right)< 0\)

\(f\left(a_2\right)=\left(a_2-a_1\right)\left(a_2-a_3\right)\left(a_2-a_5\right)>0\)

\(f\left(a_4\right)=\left(a_4-a_1\right)\left(a_4-a_3\right)\left(a_4-a_5\right)< 0\)

\(f\left(a_6\right)=\left(a_6-a_1\right)\left(a_6-a_3\right)\left(a_6-a_5\right)>0\)

\(\Rightarrow f\left(x\right)\) có nghiệm thuộc các khoảng \(\left(a_1,a_2\right);\left(a_2,a_4\right);\left(a_4,a_6\right)\)

mà bậc cao nhất của f(x) là 3 nên f(x) có tối đa 3 nghiệm

=> dpcm

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
BP
Xem chi tiết
LH
Xem chi tiết
PL
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
NP
Xem chi tiết
SK
Xem chi tiết
TC
Xem chi tiết