Giải:
Gọi \(a_1=a\), \(a_2=b,a_3=c,a_4=d\)
Ta có: \(b^2=a.c\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=b.d\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,b=ck,c=dk\)
Ta có: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{\left(bk\right)^3+\left(ck\right)^3+\left(dk\right)^3}{b^3+c^3+d^3}=\frac{b^3.k^3+c^3.k^3+d^3.k^3}{b^3+c^3+d^3}=\frac{k^3\left(b^3+c^3+d^3\right)}{b^3+c^3+d^3}=k^3\) (1)
\(\frac{a}{d}=\frac{bk}{d}=\frac{ckk}{d}=\frac{dkkk}{d}=k^3\) (2)
Từ (1) và (2) suy ra \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\) hay \(\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\) ( đpcm )