§1. Mệnh đề

OQ

Cho 3 tập hợp \(A=\left(-3;-1\right)\cup\left(1;2\right),B=\left(m;+\infty\right),C=\left(-\infty;2m\right)\)

Tìm m để \(A\cap B\cap C\ne\phi\)

AH
1 tháng 10 2020 lúc 0:11

Lời giải:

$A\cap B\cap C=A\cap (B\cap C)$

Để tập hợp trên khác rỗng thì trước hết $B\cap C\neq \varnothing$

Điều này xảy ra khi $2m>m\Leftrightarrow m>0$

Khi đó: $B\cap C=(m; 2m)$

$\Rightarrow A\cap B\cap C=((-3;-1)\cup (1;2))\cap (m; 2m)$

$=((-3;-1)\cap (m;2m))\cup ((1;2)\cap (m; 2m))$

$=(1;2)\cap (m; 2m)$ (do $m>0$)

Để $(1;2)\cap (m; 2m)\neq \varnothing$ thì:

\(\left\{\begin{matrix} 2m>1\\ m< 2\end{matrix}\right.\Leftrightarrow m\in (\frac{1}{2};2)\)

Vậy...........

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
OQ
Xem chi tiết
NT
Xem chi tiết
TH
Xem chi tiết
DW
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
DY
Xem chi tiết