Cho 3 số x, y, z thỏa mãn: \(\frac{xy}{2y+3x}=\frac{yz}{5y+3x}=\frac{xz}{2z+5x}\). Chứng minh rằng x, y, z tỉ lệ với 2, 3, 5
tìm x,y,z biết
\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}\) va 10x-3y-2z=-4
Bài 1:Tìm x,y,z biết:
a, \(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}\) và \(10x-3y-2z=-4\)
b, \(3\left(x-1\right)=2\left(y-2\right)=3\left(z-3\right)\) và \(2x+3y-z=50\)
Cho 3 số x,y,z thỏa mãn x.y.z=2019. Tính giá trị biểu thức
\(P=\frac{2019x}{xy+2019x+2019}+\frac{y}{yz+y+2019}+\frac{z}{xz+z+1}\)
tìm x,y,z
a) 4x=5y và 3x-2y=35
b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và x+y+z= -90
c) x:y:z=3:5:(-2) và 5x-y+3z=124
d) \(\frac{x-4}{3}=\frac{y-6}{3}=\frac{z-8}{4}\)và x+y+z=27
e) \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và 4x-3y+2z=36 Giúp mk vs mk đang cần gấp, trc 20h tối nay nhé , mk sẽ tik thật nhiều
tìm x,y,z biết :
\(\frac{4}{3x-2y}=\frac{3}{2z-4x}=\frac{2}{4y-3z}\) và x+y-z= -10
a)Cho \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)và 3x-2y+z=40.Tìm x,y,z
b)Tìm x,y biết \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Giúp mik với!help me~~~
Bài 1: Thu gọn
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)
d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)
e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)
f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)
g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)
h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)
i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)
k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)
n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)
m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)
p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)
1.cho đa thức A=-4x\(^5y^3+x^4y^2-3x^2y^3z^2+4x^5y^3-x^4y^3+x^2y^3z^2-2y^4\)
a.thu gọn rồi tìm bậc đa thức A
b.tìm đa thức B biết rằng B-2x\(^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)
2.thu gọn các đơn thức sau rồi chỉ rõ hệ số phần biến và tìm bậc
a.A=x\(^3.\left(\frac{-5}{4}x^2y\right).\left(\frac{2}{5}x^3y^4\right)\)
b.B=\(\left(\frac{-3}{4}x^5y^4\right).\left(xy^2\right).\left(\frac{-8}{9}x^2y^5\right)\)