Ôn thi vào 10

MD

Cho 3 số thực dương a, b, c thỏa mãn \(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}=\dfrac{3}{2}\). Tính \(P=a^2+b^2+c^2\).

H24
10 tháng 12 2021 lúc 10:34

Có \(a\sqrt{1-b^2}=\sqrt{a^2\left(1-b^2\right)}\le\dfrac{a^2+1-b^2}{2}\)

\(b\sqrt{1-c^2}=\sqrt{b^2\left(1-c^2\right)}\le\dfrac{b^2+1-c^2}{2}\)

\(c\sqrt{1-a^2}=\sqrt{c^2\left(1-a^2\right)}\le\dfrac{c^2+1-a^2}{2}\)

=> \(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}\le\dfrac{3}{2}\)

Dấu "=" <=> \(\left\{{}\begin{matrix}a^2=1-b^2\\b^2=1-c^2\\c^2=1-a^2\end{matrix}\right.\)

<=> \(a^2+b^2+c^2=\dfrac{3}{2}\)

Bình luận (0)

Các câu hỏi tương tự
VN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
VN
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
CK
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết