Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a;b;c là các số thực dương,tìm max của: \(A=\sqrt{\dfrac{a}{2a+b+c}}+\sqrt{\dfrac{b}{2b+a+c}}+\sqrt{\dfrac{c}{2c+a+b}}\)
Cho tỉ lệ thức \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\). Chứng minh rằng ta có các tỉ lệ thức sau (giả thiết các tỉ lệ thức đều có nghĩa):
a) \(\dfrac{2a+3b}{2a-3b}\) = \(\dfrac{2c+3d}{2c-3d}\)
b) \(\dfrac{ab}{cd}\) = \(\dfrac{a^2-b^2}{c^2-d^2}\)
c) \(\left(\dfrac{a+b}{c+d}\right)^2\) = \(\dfrac{a^2+b^2}{c^2+d^2}\)
cho 3 số thực dương \(0\le a\le b\le c\le1\) .chứng minh rằng \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le2\)
Chứng minh rằng:
a, \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\) với a> b> 0
b, \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
c, \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^3\)
1.Cho \(\dfrac{m-n}{p-q}\)=\(\dfrac{n}{q}\). Chứng minh\(\dfrac{m^2+n^2}{p^2+q^2}=\dfrac{\left(m+n\right)^2}{\left(p+q\right)^2}\)(Giả thiết các tỉ số đều có nghĩa)
2.Cho \(\dfrac{2}{a}=\dfrac{1}{b}+\dfrac{1}{c}\)(a,b,c\(\ne\)0,a\(\ne\)c). Chứng minh rằng:\(\dfrac{b}{c}=\dfrac{b-a}{a-c}\)
3.Cho b2=ac.Chứng minh:\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)
4.Cho \(\dfrac{x}{3}\)=\(\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{6}\). Tính \(M=\dfrac{2x+3y+4z}{3x+4y+5z}\)
Cho đa thức \(P\left(x\right)=ax^2+bx+c\). Trong đó \(a,b,c\) là các hằng số thỏa mãn \(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\) và \(a\ne0\). Tính \(\dfrac{P\left(-2\right)-3P\left(1\right)}{a}\).
a) Cho \(a+b+c+d=2000\) và \(\dfrac{1}{a+b+c}+\dfrac{1}{b+c+d}+\dfrac{1}{c+d+a}+\dfrac{1}{d+a+b}=\dfrac{1}{40}\)
Tính giá trị của: \(S=\dfrac{a}{b+c+d}+\dfrac{b}{c+d+a}+\dfrac{c}{d+a+b}+\dfrac{d}{a+b+c}\)
b) Xác định tổng các hệ số của đa thức \(f\left(x\right)=\left(5-6x+x^2\right)^{2016}\cdot\left(5-6x+x^2\right)^{2017}\)
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\)và a + b + c \(\ne\) 0; a = 2005. Tính b, c.
Cho \(x;y;z\) là các số dương cm:
a) \(\dfrac{x}{2x+y+z}+\dfrac{y}{2y+x+z}+\dfrac{z}{2z+x+y}\le\dfrac{3}{4}\)
b) \(\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\)