Chương I - Căn bậc hai. Căn bậc ba

FS

Cho 3 số không âm x,y,z thoả mãn điều kiện \(x+y+z=1\). Chứng minh rằng: \(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\)

DD
20 tháng 7 2018 lúc 17:11

Ta có : \(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)

\(\Rightarrow A^2=\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\)

Theo BĐT Bu - nhi - a - cốp - xki ta có :

\(A^2=\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\le\left(1^2+1^2+1^2\right)\left[2\left(x+y+z\right)\right]=3.2=6\)

\(\Rightarrow A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\) khi \(x=y=z=\dfrac{1}{3}\)

Bình luận (1)

Các câu hỏi tương tự
NA
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết
TG
Xem chi tiết
VC
Xem chi tiết
BL
Xem chi tiết
NT
Xem chi tiết
PL
Xem chi tiết
H24
Xem chi tiết